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ABSTRACT

The primary purpose of the Macquarie participation in RT04s
was to establish a baseline diarisation system bringing to-
gether recent work done in our group. As such, the perfor-
mance of the system was not expected to be competitive,
but rather to help highlight the issues in the diarisation task
where we could usefully concentrate our efforts.

The system combined a simple speech/silence decision,
delta BIC speaker segmentation and single Gaussian speaker
models to perform the diarisation task. Hierarchical cluster-
ing was used to derive between 3 and 10 speaker clusters;
models based on each number of speakers were then com-
pared using a BIC corrected likelihood measure on the data.

1. INTRODUCTION

The NIST RT04 Spring evaluation programme has provided
us with an excellent motivation to bring together various
threads of work on meeting room speech processing into a
complete end-to-end speaker diarisation system. Our pre-
vious work has involved an investigation of the delta BIC
segmentation algorithm [1, 2] in multi-party teleconference
and face to face meetings and the use of directional cues
from multiple microphones in this context.

While we have investigated a number of multi-microphone

methods we were not able to integrate these into this sys-
tem due to the lack of information about microphone place-
ment in the various data sources used for evaluation. Con-
sequently the system we built was a very basic one using
data from a single distant microphone and using established
techniques for speaker segmentation and clustering. Build-
ing this system has served to highlight the areas of this task
that we might be able to do well and those where significant
interesting problems remain.

This paper serves to document the system built for this
evaluation task. Had more time and resources been avail-
able we might have been able to do more experimentation
leading up to running the evaluation data. However, circum-
stances only allowed us to build a very basic system and
to make some very rudimentary parameter selections using
the devtest data set. There are many parts of this problem

which have been solved more effectively in previously pub-
lished work; many of the choices made in building this sys-
tem were to allow us to have a working system in time for
the evaluation. Hence we use simple Gaussian models when
mixture models would be more appropriate.

2. SYSTEM DESCRIPTION
The Macquarie system consists of four components:

e Speech/Silence classifier
o Delta BIC speaker segmentation
e Speaker Clustering

e Speaker Identification

2.1. Speech/Silence Classifier

An earlier version of our system relied entirely on the delta
BIC segmentation algorithm to find both speech and silence
segments in the data. While this was largely effective we
found that many of the *speech’ segments found would in-
clude significant portions of silence which would then bias
the speaker models produced. To prevent this a simple RMS
and zero crossing based speech/silence classifier was built
to first find the segments of the signal corresponding to speech
which would then subsequently be segmented by the delta
BIC algorithm. This improved the purity of the speech seg-
ments and had the side effect of significantly speeding up
the system since only smaller speech segments had to be
dealt with by the more complex segmentation algorithm.

In order to compensate for the various recording condi-
tions found in the evaluation data the speech/silence clas-
sifier was tuned on the part of each recording before the
target section. In this section of audio, the minimum and
maximum RMS and ZCR values were recorded and a cal-
ibration factor of one tenth of the range was calculated for
both RMS and ZCR. The speech silence decision was then
made according to the metric:
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The factor of 2 for ZCR was chosen rather than being
found via an optimisation process. A threshold of 4.0 was

used in the results reported here.

2.2. Delta BIC Speaker Segmentation

The speech segments output by the previous step were fur-
ther segmented using the Bayesian Inference Criterion seg-
mentation algorithm [3]. BIC is an acoustic change detec-
tion algorithm that is commonly used in speaker change de-
tection; the assumption being that a qualitative change in the
acoustic signal will often correlate with a change in speaker.

The input data was parameterised as 12 MFCC coef-
ficients calculated every 10ms on a 25.6ms window. The
sequence of MFCC vectors was processed using the BIC
segmentation algorithm as follows:

1. A buffer of 200 MFCC vectors was initialised

2. Each point was evaluated as a potential cut point us-
ing the BIC criterion (leaving a 15 point margin at
each end of the buffer).

3. If at least one point in the buffer had a BIC value of
greater than zero, the point of maximum BIC within
the buffer was added to the list of boundaries. The
MFCC vectors before the boundary were discarded
from the buffer.

4. Ifthe buffer contained less than 500 vectors, 100 more
vectors were added otherwise 50 new vectors were
added. If the buffer contained more than 500 vectors
long, vectors were removed from the start until only
500 remained.

5. Repeat from 2 until end of sequence.

In earlier work [1] that the delta BIC algorithm would
find many false positive boundaries because it was sensitive
to acoustic changes such as the onset of frication or voic-
ing within one speaker turn. In these experiments, the BIC
A parameter was set slightly higer to 1.1 which seemed to
eliminate many of these false positives. Time did not permit
detailed experimentation to find an optimum value for this
parameter.

It’s possible to evaluation this part of the overall system
independently of subsequent speaker clustering and identi-
fication stages. In our earlier paper we reported two kinds
of error: False Positive errors are automatically detected
boundaries that occur within a speaker turn, Missed Bound-
ary errors are speaker turn boundaries that aren’t detected
by our algorithm. The first kind of errors are not too se-
rious in this context since they just mean that a speaker

turn has been too finely segmented. Missed boundary er-
rors are more important since they represent missed acous-
tic changes. The following table summarises the (post-hoc)
analysis of our system’s performance on the evaluation data
set.

False Positive  Missed Boundary

CMU-20030109-1530 28 66
CMU-20030109-1600 23 65
ICSI-20000807-1000 27 59
ICSI-20011030-1030 19 59
LDC-20011121-1700 16 75
LDC-20011207-1800 20 57
NIST-20030623-1409 19 76
NIST-20030925-1517 28 55
Overall 22 64

Table 1. Speaker change point detection errors (%) from
the evaluation data

From the raw results, it is clear that our system is find-
ing too few change points — 1506 as opposed to 3334 real
turns (6373 boundaries). Given more time, it would be use-
ful to attempt to tune the segmentation algorithm to find a
larger number of segment boundary hypotheses; as men-
tioned above, the \ parameter was adjusted to remove spu-
rious breaks but this may have resulted in the removal of too
many good break hypotheses.

2.3. Speaker Clustering

Once speaker change points had been generated a speaker
clustering algorithm is needed to identify how many speak-
ers are involved in the meeting. According to the rules of
RTO04s, the system can have no prior knowledge of speaker
identity or number of speakers. In a real world application
one might expect to have some indication of the context of
the meeting which might provide known speaker models or
an estimate of speaker numbers. However, the challenge
here is to discover this from the audio data.

The standard approach to clustering is to define a dis-
tance measure between clusters and iteratively merge the
most-similar clusters until the required number of clusters
is reached. The two variables in this algorithm are the dis-
tance measure used and the stopping criterion.

In our system, only speech segments longer than 1.5
seconds were used for speaker clustering. The motivation
here being that shorter segments are more likely to contain
idiosyncratic speech and hence would be less useful in char-
acterising speakers. Clusters were represented by single
Gaussian models built from the MFCC parameters of the
cluster members. In order to combine clusters a distance
measure between Gaussians is needed. A useful review of
a number of Gaussian distance measures is given in [4]; we



chose to use the Mahalanobis distance which has the advan-
tage of only requiring the diagonal covariance matrix and
thus simplifying the distance computation.

Clustering was performed via the hcl ust function in
the R statistical package [5] which supports a humber of
clustering methods. We chose to use Ward’s minimum vari-
ance method because it seemed to give a good distribution
of speaker clusters through the data. Other methods tested
tended to give one or two very large clusters which seemed
inappropriate; however no thorough testing of the clustering
methods performance was possible within the time-frame of
the evaluation.

The hcl ust function performs a hierarchical cluster
analysis and generates a tree representation of the clusters
in the data. It is then possible to derive any given number
of clusters by cutting the tree at some depth below the root.
Our approach to determining the optimal number of clus-
ters for the data was to generate cluster sets with between
3 and 10 clusters from the hierarchical clustering and then
test each one for goodness of fit to the data.

Testing a set of cluster models against the data is straight-
forward since we can calculate the overall probability of the
data given the set of Gaussian models. However these prob-
abilities need to be corrected for the complexity of the mod-
els; this can be done via the Bayesian Inference Criterion
(BIC) which provides a correction factor according to the
difference in the number of parameters between the models
being compared [3, 6]. In this manner the corrected like-
lihoods of the different numbers of speaker models can be
compared and the best fit selected.

Using the BIC correction factor the decision as to which
number of cluster models to select is based on:

argmazflog(p(DI6:)) — IAK(1+ K) log(N)] @)

here 0; is the set of cluster models for ¢ clusters, K; is the
dimensionality of the input data, NV is the length of the ob-
servation sequence and X is a fudge factor which is ideally
set to one but which can be adjusted to optimise the algo-
rithm for a particular problem. In our systems A was set to
1.2, a value that was derived by trial and error adjustments
on trial runs with the devtest data set. Figure 2.3 shows the
log probability values for the CMU_20030109-1530 record-
ing for which the correct number of speakers is 4. It can be
seen that our algorithm will choose 10 clusters in this case
as the maximum corrected likelihood.

Varying the \ parameter changes the shape of the curve
emphasising smaller numbers of clusters and so for most
curves it is possible to find a value of A which will give the
correct answer. The trick is to find a value which gives a
good answer most of the time. It is fairly clear from our
results that we did not find this value since in all cases our
system chose 10 clusters as the best answer.
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Fig. 1. Corrected likelihoods for different numbers of

speaker clusters in CMU_20030109-1530

2.4. Speaker Identification

Once speaker clustering had been performed we have a set
of speaker models derived from the segments in each clus-
ter. As mentioned above only simple Gaussian models were
used in our system. These models were then used to clas-
sify all of the speech segments in the audio data — recall
that only those longer than 1.5 seconds were included in the
clustering step. The resulting labelling was then output as
the final result of our system.

3. RESULTS
No Overlap Overlap
Missed Speaker Time 2.7 21.3
FAlarm Speaker Time 2.8 1.8
Speaker Error Time 56.5 45.9
Overall Error 62.0 69.1
Weighted Error 78.3 106.9

Table 2. Summary of Results, percentages

Not surprisingly, the overall results from our system are
quite poor. The main source of error derives from getting
the number of clusters wrong; this gives rise to the large
Speaker Error Time since we always chose nine speakers
there was a high likelihood that a speaker would be miss-
labelled. This is confounded by the simple Gaussian models
which are not strong enough to properly characterise speak-
ers and hence will cause clustering errors and speaker iden-
tification errors. We are heartened by the low error score for



missed and false alarm speech which mainly seems to in-
dicate that our speech/silence detection strategy is working
well.

4. CONCLUSION

This has been an incredibly useful exercise in building our
work from a collection of isolated experiments with meet-
ing room speech to an end-to-end system capable of speaker
diarisation. It was very clear all the way through the process
that the compromises we were making to build the system in
time for the evaluation would mean that performance would
suffer. However now that it exists, we can return to the sys-
tem and experiment with published methods and new tech-
niques to improve the overall performance.
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